Non-destructive Analysis of the Nuclei of Transgenic Living Cells Using Laser Tweezers and Near-infrared Raman Spectroscopic Technique
نویسندگان
چکیده
Transgenic cell lines of loblolly pine (Pinus taeda L.) were analyzed by a compact laser-tweezers-Raman-spectroscopy (LTRS) system in this investigation. A low power diode laser at 785 nm was used for both laser optical trapping of single transgenic cells and excitation for near-infrared Raman spectroscopy of the nuclei of synchronized cells, which were treated as single organic particles, at the S-phase of the cell cycle. Transgenic living cells with gfp and uidA genes were used as biological samples to test this LTRS technique. As expected, different Raman spectra were observed from the tested biological samples. This technique provides a high sensitivity and enables real-time spectroscopic measurements of transgenic cell lines. It could be a valuable tool for the study of the fundamental cell and molecular biological process by trapping single nucleus and by providing a wealth of molecular information about the nuclei of cells.
منابع مشابه
Near-infrared Raman spectroscopy of single optically trapped biological cells.
We report on the development and testing of a compact laser tweezers Raman spectroscopy (LTRS) system. The system combines optical trapping and near-infrared Raman spectroscopy for manipulation and identification of single biological cells in solution. A low-power diode laser at 785 nm was used for both trapping and excitation for Raman spectroscopy of the suspended microscopic particles. The d...
متن کاملFeasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley.
Rapid detection of deoxynivalenol (DON) in cereal-based food and feed has long been the goal of regulators and manufacturers. As non-destructive approaches, infrared (IR) and near-infrared (NIR) spectroscopic techniques have been used for the prediction and classification of contaminated single-kernel and ground grain without any DON extraction steps. These methods, however, are hindered by the...
متن کاملActivation-dependent phases of T cells distinguished by use of optical tweezers and near infrared Raman spectroscopy.
Near-infrared Raman spectroscopy may provide a highly sensitive, noninvasive means to identify activation status of leukocytes. The purpose of the current study was to establish Raman spectroscopic characteristics of T cell activation. Activation of the RsL.11 T cell clone in vitro with Con A resulted in specific decrements in band intensities at 785, 1048, 1093, and 1376 cm(-1) but did not alt...
متن کاملIdentification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy.
We report on a rapid method for reagentless identification and discrimination of single bacterial cells in aqueous solutions using a combination of laser tweezers and confocal Raman spectroscopy (LTRS). The optical trapping enables capturing of individual bacteria in aqueous solution in the focus of the laser beam and levitating the captured cell well off the cover plate, thus maximizing the ex...
متن کاملEvaluation of Escherichia coli cell response to antibiotic treatment by use of Raman spectroscopy with laser tweezers.
Laser tweezers Raman spectroscopy was used to detect the cellular response of Escherichia coli cells to penicillin G-streptomycin and cefazolin. Time-dependent intensity changes of several Raman peaks at 729, 1,245, and 1,660 cm(-1) enabled untreated cells and cells treated with the different antibiotic drugs to be distinguished.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2005